Extensions 1→N→G→Q→1 with N=C32 and Q=C4xA4

Direct product G=NxQ with N=C32 and Q=C4xA4
dρLabelID
A4xC3xC12108A4xC3xC12432,697

Semidirect products G=N:Q with N=C32 and Q=C4xA4
extensionφ:Q→Aut NdρLabelID
C32:(C4xA4) = C62:4C12φ: C4xA4/C23C6 ⊆ Aut C32366-C3^2:(C4xA4)432,272
C32:2(C4xA4) = A4xC32:C4φ: C4xA4/A4C4 ⊆ Aut C322412+C3^2:2(C4xA4)432,744
C32:3(C4xA4) = C4xC32:A4φ: C4xA4/C22xC4C3 ⊆ Aut C32363C3^2:3(C4xA4)432,333
C32:4(C4xA4) = C3xDic3xA4φ: C4xA4/C2xA4C2 ⊆ Aut C32366C3^2:4(C4xA4)432,624
C32:5(C4xA4) = A4xC3:Dic3φ: C4xA4/C2xA4C2 ⊆ Aut C32108C3^2:5(C4xA4)432,627

Non-split extensions G=N.Q with N=C32 and Q=C4xA4
extensionφ:Q→Aut NdρLabelID
C32.(C4xA4) = C4xC32.A4φ: C4xA4/C22xC4C3 ⊆ Aut C32363C3^2.(C4xA4)432,332
C32.2(C4xA4) = Dic3xC3.A4φ: C4xA4/C2xA4C2 ⊆ Aut C32366C3^2.2(C4xA4)432,271
C32.3(C4xA4) = C12xC3.A4central extension (φ=1)108C3^2.3(C4xA4)432,331

׿
x
:
Z
F
o
wr
Q
<